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Preface

1. Document Conventions

Certain words in this manual are represented in different fonts, styles, and weights. This highlighting

indicates that the word is part of a specific category. The categories include the following:

Courier font

Courier font represents commands, file names and paths, and prompts .

When shown as below, it indicates computer output:

Desktop       about.html       logs      paulwesterberg.png

Mail          backupfiles      mail      reports

bold Courier font

Bold Courier font represents text that you are to type, such as: service jonas start

If you have to run a command as root, the root prompt (#) precedes the command:

# gconftool-2 

italic Courier font

Italic Courier font represents a variable, such as an installation directory: install_dir/bin/

bold font

Bold font represents application programs and text found on a graphical interface.

When shown like this:  OK , it indicates a button on a graphical application interface.

Additionally, the manual uses different strategies to draw your attention to pieces of information. In

order of how critical the information is to you, these items are marked as follows:

Note

A note is typically information that you need to understand the behavior of the system.

Tip

A tip is typically an alternative way of performing a task.
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Important

Important information is necessary, but possibly unexpected, such as a configuration

change that will not persist after a reboot.

Caution

A caution indicates an act that would violate your support agreement, such as

recompiling the kernel.

Warning

A warning indicates potential data loss, as may happen when tuning hardware for

maximum performance.

2. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.
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Installation
In this chapter you will learn how to install python

1.1. On Windows

You have to download the latest Windows(TM) installer from the python site http://python.org/ftp/

python/2.5.2/python-2.5.2.msi . Install it just as any other Windows software.

1.2. On GNU/Linux

Generally all GNU/Linux distributions come with Python, so no need to worry about that :) If you don't

have it then you can install it by either downloading from the python website or from your distribution's

repository.

For Fedora

#yum install python

For Debian

#apt-get install python
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The Beginning
So we are going to look at our first code. As python is an interpreted language , you can directly write

the code into the python interpreter or write in a file and then run the file. First we are going to do that

using the interpreter, to start type python in the command prompt (shell or terminal).

[kd@kdlappy ~]$ python

Python 2.5.1 (r251:54863, Oct 30 2007, 13:54:11)

[GCC 4.1.2 20070925 (Red Hat 4.1.2-33)] on linux2

Type "help", "copyright", "credits" or "license" for more information. 

>>>

In our first code we are going to print "Hello World!" , so do it as below,

>>> print "Hello World!"

Hello World!

2.1. helloworld.py

Now as a serious programmer you may want to write the above code into a source file. We will create

a helloworld.py. Use any text editor you like to create the file. I used vi, you can even use GUI based

tools like Kate, gedit too.

#!/usr/bin/env python

print "Hello World!"

To run the code first you have to make the file executable, in GNU/Linux you can do that by giving the

command in a shell or terminal

$ chmod +x helloworld.py

Then

$ ./helloworld.py 

Hello World!

On the first line you can #! , we call it sha-bang. Using this we are telling that use python interpreter to

run this code. In the next line we are printing a text message. In python we call all the line of texts as

strings.
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2.2. Whitespaces and indentation

In Python whitespace is an important thing. We divide different identifiers using spaces.Whitespace in

the beginning of the line is known as indentation, but if you give wrong identation it will throw an error.

Examples are given below:

>>> a = 12

>>>  a = 12

  File "<stdin>", line 1

      a = 12

          ^

          IndentationError: unexpected indent

Caution

There is an extra space in the beginning of the second line which is causing the error,

so always look for the proper indentation.

2.3. Comments

Comments are some piece of English text which explains what this code does, we write comments in

the code so that is easier for others to understand. A comment line starts with # , everything after that

is ignored as comment, that means they don't effect on the program.

>>> #this is a comment

>>> #the next line will add two numbers

>>> a = 12 + 34

>>> print c #this is a comment too :)

2.4. Modules

Modules are python files which contain different function definitions , variables which we can reuse, it

should always end with a .py extension.. Python itself is having a vast module library with the default

installation. We are going to use some of them. To use a module you have to import it first.

>>> import math

>>> print math.e

2.71828182846
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We are going to learn more about modules on the Modules chapter.
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Variables and Datatypes
Every programming language is having own grammar rules just like the other languages we speak.

3.1. Keywords and Identifiers

Python codes can be divided into identifiers. Identifiers (also referred to as names) are described by

the following lexical definitions:

identifier ::= (letter|"_") (letter | digit | "_")* 

letter ::= lowercase | uppercase 

lowercase ::= "a"..."z" 

uppercase ::= "A"..."Z" 

digit ::= "0"..."9"

This means _abcd is a valid identifier where as 1sd is not. The following identifiers are used as

reserved words, or keywords of the language, and cannot be used as ordinary identifiers. They must

be spelled exactly as written here:

and       del      from      not   while 

as        elif     global    or    with 

assert    else     if        pass  yield 

break     except   import    print 

class     exec     in        raise 

continue  finally  is        return 

def       for      lambda    try

In Python we don't specify what kind of data we are going to put in a variable. So you can directly write

abc = 1 and abc will become an integer datatype. If you write abc = 1.0 abc will become of floating

type. Here is a small program to add two given numbers

>>> a = 13 

>>> b = 23

>>> a + b 

36

From the above example you can understand that to declare a variable in python , what you need

is just to type the name and the value. Python can also manipulate strings They can be enclosed in

single quotes or double quotes like
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>>> 'India'

'India' 

>>> 'India\'s best' 

"India's best" 

>>> "Hello World!" 

'Hello World!'

3.2. Reading input from the Keyboard

Generally the real life python codes do not need to read input from the keyboard. In python we use

raw_input function to do input. raw_input("String to show") , this will return a string as output. Let us

write a program to read a number from the keyboard and check if it is less than 100 or not. Name of

the program is testhundred.py

#!/usr/bin/env python   

number = int(raw_input("Enter an integer: "))

if number < 100:   

    print "Your number is smaller than 100"   

else:   

    print "Your number is greater than 100"

The output

[kd@kdlappy book]$ ./testhundred.py 

Enter an integer: 13 

Your number is smaller than 100 

[kd@kdlappy book]$ ./testhundred.py 

Enter an integer: 123 

Your number is greater than 100

In the next program we are going to calculate investments.

#!/usr/bin/env python 

amount = float(raw_input("Enter amount: ")) 

inrate = float(raw_input("Enter Interest rate: ")) 

period = int(raw_input("Enter period: ")) 

value = 0 

year = 1 

while year <= period:
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    value = amount + (inrate * amount)

    print "Year %d Rs. %.2f" %(year, value)

    amount = value

    year = year + 1

The output

[kd@kdlappy book]$ ./investment.py

Enter amount: 10000

Enter Interest rate: 0.14

Enter period: 5

Year 1 Rs. 11400.00

Year 2 Rs. 12996.00

Year 3 Rs. 14815.44

Year 4 Rs. 16889.60

Year 5 Rs. 19254.15

3.3. Some Examples

Some examples of variables and datatypes:

3.3.1. Average of N numbers

In the next program we will do an average of N numbers.

#!/usr/bin/env python

N = 10

sum = 0

count = 0

while count < N:

    number = float(raw_input(""))

    sum = sum + number

    count = count + 1

average = float(sum)/N

print "N = %d , Sum = %f" % (N, sum)

print "Average = %f" % average

The output

[kd@kdlappy book]$ ./averagen.py

1
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2.3

4.67

1.42

7

3.67

4.08

2.2

4.25

8.21

N = 10 , Sum = 38.800000

Average = 3.880000

3.3.2. Temperature conversion

In this program we will convert the given temperature to Celsius from Fahrenheit by using the formula

C=(F-32)/1.8

#!/usr/bin/env python

fahrenhite = 0.0

print "Fahrenheit Celsius"

while fahrenheit <= 250:

    celsius = ( fahrenheit - 32.0 ) / 1.8 #Here we calculate the fahrenhite value

    print "%5.1f %7.2f" % (fahrenheit , celsius)

    fahrenheit = fahrenheit + 25

The output

[kd@kdlappy book]$ ./temperature.py

Fahrenheit Celsius

  0.0  -17.78

 25.0   -3.89

 50.0   10.00

 75.0   23.89

100.0   37.78

125.0   51.67

150.0   65.56

175.0   79.44

200.0   93.33

225.0  107.22

250.0  121.11

3.4. Multiple assignments in a single line

You can even assign values to multiple variables in a single line, like
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>>> a , b = 45, 54

>>> a

45

>>> b

54

Using this swapping two numbers becomes very easy

>>> a, b = b , a

>>> a

54

>>> b

45
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Operators and expressions
In python most of the lines you will write will be expressions. Expressions are made of operators and

operands. An expression is like 2 + 3 .

4.1. Operators

Operators are the symbols which tells the python interpreter to do some mathematical or logical

operation. Few basic examples of mathematical operators are given below:

>>> 2 + 3

5

>>> 23 - 3

20

>>> 22.0 / 12

1.8333333333333333

To get floating result you need to the division using any of operand as floating number. To do modulo

operation use % operator

>>> 14 % 3

2

4.2. Example of integer arithmetic

The code

#!/usr/bin/env python

days = int(raw_input("Enter days: "))

months = days / 30

days = days % 30

print "Months = %d Days = %d" % (months, days)

The output

[kd@kdlappy book]$ ./integer.py

Enter days: 265
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Months = 8 Days = 25

In the first line I am taking the input of days, then getting the months and days and at last printing

them. You can do it in a easy way

#!/usr/bin/env python

days = int(raw_input("Enter days: "))

print "Months = %d Days = %d" % (divmod(days, 30))

The divmod(num1, num2) function returns two values , first is the division of num1 and num2 and in

second the modulo of num1 and num2.

4.3. Relational Operators

You can use the following operators as relational operators

Relational Operators

Operator Meaning

< Is less than

<= Is less than or equal to

> Is greater than

>= Is greater than or equal to

== Is equal to

!= Is not equal to

Some examples

>>> 1 < 2

True

>>> 3 > 34

False

>>> 23 == 45

False

>>> 34 != 323

True

// operator gives the floor division result

>>> 4.0 // 3

1.0
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>>> 4.0 / 3

1.3333333333333333

4.4. Logical Operators

To do logical AND , OR we use and , or keywords. x and y returns False if x is False else it returns

evaluation of y. If x is True, it returns True.

>>> 1 and 4

4

>>> 1 or 4

1

>>> -1 or 4

-1

>>> 0 or 4

4

4.5. Shorthand Operator

x op = expression is the syntax for shorthand operators. It will be evaluated like x = x op expression ,

Few examples are

>>> a = 12

>>> a += 13

>>> a

25

>>> a /= 3

>>> a

8

>>> a += (26* 32)

>>> a

840

shorthand.py example

#!/usr/bin/env python

N = 100

a = 2

while a < N:

    print "%d" % a

    a *= a



Chapter 4. Operators and expressions

16

The output

[kd@kdlappy book]$ ./shorthand.py

2

4

16

4.6. Expressions

Generally while writing expressions we put spaces before and after every operator so that the code

becomes clearer to read, like

a = 234 * (45 - 56.0 / 34)

One example code used to show expressions

#!/usr/bin/env python

a = 9

b = 12

c = 3

x = a -b / 3 + c * 2 -1

y = a -b / (3 + c) * (2 -1)

z = a - (b / (3 +c) * 2) -1

print "X = ", x

print "Y = ", y

print "Z = ", z

The output

[kd@kdlappy book]$ ./evaluationexp.py

X =  10

Y =  7

Z =  4

At first x is being calculated. The steps are like this

9 - 12 / 3 + 3 * 2 -1
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9 - 4 + 3 * 2 - 1

9 - 4 + 6 - 1

5 + 6 -1

11 - 1

10

Now for y and z we have parentheses, so the expressions evaluated in different way. Do the

calculation yourself to check them.

4.7. Type Conversions

We have to do the type conversions manually. Like

float(string) -> float value

int(string) -> integer value

str(integer) or str(float) -> string representation 

>>> a = 8.126768

>>> str(a)

'8.126768'

4.8. evaluateequ.py

This is a program to evaluate 1/x+1/(x+1)+1/(x+2)+ ... +1/n series upto n, in our case x = 1 and n =10

#!/usr/bin/env python

sum = 0.0

for i in range(1, 11):

    sum += 1.0 / i

    print "%2d %6.4f" % (i , sum)

The output

[kd@kdlappy book]$ ./evaluateequ.py

 1 1.0000

 2 1.5000

 3 1.8333

 4 2.0833

 5 2.2833

 6 2.4500

 7 2.5929

 8 2.7179
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 9 2.8290

10 2.9290

In the line sum += 1.0 / i what is actually happening is sum = sum + 1.0 / i.

4.9. quadraticequation.py

This is a program to evaluate the quadratic equation

#!/usr/bin/env python

import math

a = int(raw_input("Enter value of a: "))

b = int(raw_input("Enter value of b: "))

c = int(raw_input("Enter value of c: "))

d = b * b - 4 * a * c

if d < 0:

    print "ROOTS are imaginary"

else:

    root1 = (-b + math.sqrt(d)) / (2.0 * a)

    root2 = (-b - math.sqrt(d)) / (2.0 * a)

print "Root 1 = ", root1

print "Root 2 = ", root2

4.10. salesmansalary.py

In this example we are going to calculate the salary of a camera salesman. His basic salary is 1500,

for every camera he will sell he will get 200 and the commission on the month's sale is 2 %. The input

will be number of cameras sold and total price of the cameras.

#!/usr/bin/env python

import math

a = int(raw_input("Enter value of a: "))

b = int(raw_input("Enter value of b: "))

c = int(raw_input("Enter value of c: "))

d = b * b - 4 * a * c

if d < 0:

    print "ROOTS are imaginary"

else:

    root1 = (-b + math.sqrt(d)) / (2.0 * a)

    root2 = (-b - math.sqrt(d)) / (2.0 * a)

print "Root 1 = ", root1

print "Root 2 = ", root2

The output



salesmansalary.py

19

[kd@kdlappy book]$ ./salesmansalary.py

Enter the number of inputs sold: 5

Enter the total prices: 20450

Bonus        = 1000.00

Commision    = 2045.00

Gross salary = 4545.00
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If-else , the control flow
While working on real life of problems we have to make decisions. Decisions like which camera to buy

or which cricket bat is better. At the time of writing a computer program we do the same. We make the

decisions using if-else statements, we change the flow of control in the program by using them.

5.1. If statement

The syntax looks like

if expression:

    do this

If the value of expression is true (anything than zero), do the what is written below under indentation.

Please remember to give proper indentation, all the lines indented will be evaluated on the True value

of the expression. One simple example is to take some number as input and check if the number is

less than 100 or not.

#!/usr/bin/env python

number = int(raw_input("Enter a number: "))

if number < 100:

    print "The number is less than 100"

Then we run it

[kd@kdlappy book]$ ./number100.py

Enter a number: 12

The number is less than 100

5.2. Else statement

Now in the above example we want to print "Greater than" if the number is greater than 100. For that

we have to use the else statement. This works when the ifstatement is not fulfilled.

#!/usr/bin/env python

number = int(raw_input("Enter a number: "))

if number < 100:
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    print "The number is less than 100"

else:

    print "The number is greater than 100"

The output

   

[kd@kdlappy book]$ ./number100.py

Enter a number: 345

The number is greater than 100

Another very basic example

>>> x = int(raw_input("Please enter an integer: "))

>>> if x < 0:

...      x = 0

...      print 'Negative changed to zero'

... elif x == 0:

...      print 'Zero'

... elif x == 1:

...      print 'Single'

... else:

...      print 'More'
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Looping
In the examples we used before , sometimes it was required to do the same work couple of times. We

use a counter to check how many times the code needs to be executed. This technique is known as

looping. First we are going to look into while statement for looping.

6.1. While loop

The syntax for while statement is like

while condition:

    statement1

    statement2

The code we want to reuse must be indented properly under the while statement. They will be

executed if the condition is true. Again like in if-else statement any non zero value is true. Let us write

a simple code to print numbers 0 to 10

>>> n = 0

>>> while n < 11:

...     print n

...     n += 1

...

0

1

2

3

4

5

6

7

8

9

10

In the first line we are setting n = 0, then in the while statement the condition is n < 11 , that means

what ever line indented below that will execute until n becomes same or greater than 11. Inside the

loop we are just printing the value of n and then increasing it by one.

6.2. Fibonacci Series

Let us try to solve Fibonacci series. In this series we get the next number by adding the previous two

numbers. So the series looks like 1,1,2,3,5,8,13 .......
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#!/usr/bin/env python

a, b = 0, 1

while b < 100:

    print b

    a, b = b, a + b

The output

[kd@kdlappy book]$ ./fibonacci1.py

1

1

2

3

5

8

13

21

34

55

89

In the first line of the code we are initializing a and b, then looping while b's value is less than 100.

Inside the loop first we are printing the value of b and then in the next line putting the value of b to a

and a + b to b in the same line.

If you put a trailing comma in the print statement , then it will print in the same line

#!/usr/bin/env python

a, b = 0, 1

while b < 100:

    print b,

    a, b = b, a + b

The output

[kd@kdlappy book]$ ./fibonacci2.py

1 1 2 3 5 8 13 21 34 55 89
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6.3. Power Series

Let us write a program to evaluate the power series. The series looks like e**x =1+x+x**2/2! +x**3/3!

+....+ x**n/n! where 0 < x < 1

#!/usr/bin/env python

x = float(raw_input("Enter the value of x: "))

n = term = num = 1

sum = 1.0

while n <= 100:

    term *= x / n

    sum += terrm

    n += 1

    if term < 0.0001:

        break

print "No of Times= %d and Sum= %f" % (n, sum)

The output

kd@kdlappy book]$ ./powerseries.py

Enter the value of x: 0

No of Times= 2 and Sum= 1.000000

[kd@kdlappy book]$ ./powerseries.py

Enter the value of x: 0.1

No of Times= 5 and Sum= 1.105171

[kd@kdlappy book]$ ./powerseries.py

Enter the value of x: 0.5

No of Times= 7 and Sum= 1.648720

In this program we introduced a new keyword called break. What break does is stop the innermost

loop. In this example we are using break under the if statement

if term < 0.0001:

        break

This means if the value of term is less than 0.0001 then get out of the loop.

6.4. Multiplication Table

In this example we are going to print the multiplication table up to 10.
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#!/usr/bin/env python

i = 1

print "-" * 50

while i < 11:

    n = 1

    while n <= 10:

        print "%4d" % (i * n),

        n += 1

    print ""

    i += 1

print "-" * 50

The output

[kd@kdlappy book]$ ./multiplication.py

--------------------------------------------------

   1    2    3    4    5    6    7    8    9   10

   2    4    6    8   10   12   14   16   18   20

   3    6    9   12   15   18   21   24   27   30

   4    8   12   16   20   24   28   32   36   40

   5   10   15   20   25   30   35   40   45   50

   6   12   18   24   30   36   42   48   54   60

   7   14   21   28   35   42   49   56   63   70

   8   16   24   32   40   48   56   64   72   80

   9   18   27   36   45   54   63   72   81   90

  10   20   30   40   50   60   70   80   90  100

--------------------------------------------------

Here we used one while loop inside another loop, this is known as nested looping. You can also see

one interesting statement here

print "-" * 50

In a print statement if we multiply the string with an integer n , the string will be printed nmany times.

Some examples

>>> print "*" * 10

**********

>>> print "#" * 20

####################

>>> print "--" * 20

----------------------------------------
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>>> print "-" * 40

----------------------------------------

6.5. Some printing * examples

Here are some examples which you can find very often in college lab reports

Design 1

#!/usr/bin/env python

row = int(raw_input("Enter the number of rows: "))

n = row

while n >= 0:

    x =  "*" * n

    print x

    n -= 1

The output

[kd@kdlappy book]$ ./design1.py

Enter the number of rows: 5

*****

****

***

**

*

Design 2

#!/usr/bin/env python

n = int(raw_input("Enter the number of rows: "))

i = 1

while i <= n:

    print "*" * i

    i += 1

The output

[kd@kdlappy book]$ ./design2.py

Enter the number of rows: 5
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*

**

***

****

*****

Design 3

#!/usr/bin/env python

row = int(raw_input("Enter the number of rows: "))

n = row

while n >= 0:

    x =  "*" * n

    y = " " * (row - n)

    print y + x

    n -= 1

The output

[kd@kdlappy book]$ ./design3.py

Enter the number of rows: 5

*****

 ****

  ***

   **

    *

6.6. Lists

We are going to learn a data structure called list before we go ahead to learn more on looping. Lists

an be written as a list of comma-separated values (items) between square brackets.

>>> a = [ 1 , 342, 2233423, 'India', 'Fedora']

>>> a

[1, 342, 2233423, 'India', 'Fedora']

Lists can keep any other data inside it. It works as a sequence too, that means

>>> a[0]

1



For loop

29

>>> a[4]

'Fedora'

You can even slice it into different pieces, examples are given below

>>> a[4]

'Fedora'

>>> a[-1]

'Fedora'

>>> a[-2]

'India'

>>> a[0:-1]

[1, 342, 2233423, 'India']

>>> a[2:-2]

[2233423]

>>> a[:-2]

[1, 342, 2233423]

>>> a[0::2]

[1, 2233423, 'Fedora']

In the last example we used two :(s) , the last value inside the third brackets indicates step. s[i:j:k]

means slice of s from i to j with step k.

To check if any value exists within the list or not you can do

>>> a = ['Fedora', 'is', 'cool']

>>> 'cool' in a

True

>>> 'Linux' in a

False

That means we can use the above statement as if clause expression. The built-in function len() can tell

the length of a list.

>>> len(a)

3

6.7. For loop

There is another to loop by using for statement. In python the for statement is different from the way

it works in C. Here for statement iterates over the items of any sequence (a list or a string). Example

given below



Chapter 6. Looping

30

>>> a = ['Fedora', 'is', 'powerfull']

>>> for x in a:

...     print x,

...

Fedora is powerfull

We can also do things like

>>> a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> for x in a[::2]:

...     print x

...

1

3

5

7

9

6.8. range() function

range() is a buitin function. From the help document

range(...)

    range([start,] stop[, step]) -> list of integers

    Return a list containing an arithmetic progression of integers.

    range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults to 0.

    When step is given, it specifies the increment (or decrement).

    For example, range(4) returns [0, 1, 2, 3].  The end point is omitted!

    These are exactly the valid indices for a list of 4 elements.

Now if you want to see this help message on your system type help(range) in the python interpreter.

help(s) will return help message on the object s. Examples of range function

>>> range(1,5)

[1, 2, 3, 4]

>>> range(1,15,3)

[1, 4, 7, 10, 13]

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
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6.9. Continue statement

Just like break we have another statement, continue, which skips the execution of the code after itself

and goes back to the start of the loop. That means it will help you to skip a part of the loop. In the

below example we will ask the user to input an integer, if the input is negative then we will ask again, if

positive then we will square the number. To get out of the infinite loop user must input 0.

#!/usr/bin/env python

while True:

    n = int(raw_input("Please enter an Integer: "))

    if n < 0:

        continue #this will take the execution back to the starting of the loop

    elif n == 0:

        break

    print "Square is ", n ** 2

print "Goodbye"

The output

[kd@kdlappy book]$ ./continue.py

Please enter an Integer: 34

Square is 1156

Please enter an Integer: 4

Square is 16

Please enter an Integer: -9

Please enter an Integer: 0

Goodbye

6.10. Else loop

We can have an optional else statement after any loop. It will be executed after the loop unless a

break statement stopped the loop.

>>> for i in range(0,5):

...     print i

... else:

...     print "Bye bye"

...

0

1

2

3
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4

Bye bye

We will see more example of break and continue later in the book.
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Data Structures
Python is having a few built-in data structure. If you are still wondering what is a data structure, then it

is nothing a but a way to store data and the having particular methods to retrieve or manipulate it. We

already saw lists before, now we will go in depth.

7.1. Lists

>>> a = [23, 45, 1, -3434, 43624356, 234]

>>> a.append(45)

>>> a

[23, 45, 1, -3434, 43624356, 234, 45]

At first we created a list a. Then to add 45 at the end of the list we call a.append(45) method. You can

see that 45 added at the end of the list. Sometimes it may require to insert data at any place within the

list, for that we have insert() method.

>>> a.insert(0, 1) # 1 added at the 0th position of the list

>>> a

[1, 23, 45, 1, -3434, 43624356, 234, 45]

>>> a.insert(0, 111)

>>> a

[111, 1, 23, 45, 1, -3434, 43624356, 234, 45]

count(s) will return you number of times s is in the list. Here we are going to check how many times 45

is there in the list.

>>> a.count(45)

2

If you want to any particular value from the list you have to use remove() method.

>>> a.remove(234)

>>> a

[111, 1, 23, 45, 1, -3434, 43624356, 45]

Now to reverse the whole list
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>>> a.reverse()

>>> a

[45, 43624356, -3434, 1, 45, 23, 1, 111]

We can store anything in the list, so first we are going to add another list b  in a , then we will learn

how to add the values of b  into a .

>>> b = [45, 56, 90]

>>> a.append(b)

>>> a

[45, 43624356, -3434, 1, 45, 23, 1, 111, [45, 56, 90]]

>>> a[-1]

[45, 56, 90]

>>> a.extend(b) #To add the values of b not the b itself

>>> a

[45, 43624356, -3434, 1, 45, 23, 1, 111, [45, 56, 90], 45, 56, 90]

>>> a[-1]

90

Above you can see how we used a.extend() method to extend the list. To sort any list we have sort()

method.

>>> a.sort()

>>> a

[-3434, 1, 1, 23, 45, 45, 45, 56, 90, 111, 43624356, [45, 56, 90]]

You can also delete element at any particular position of the list using the del keyword.

>>> del a[-1]

>>> a

[-3434, 1, 1, 23, 45, 45, 45, 56, 90, 111, 43624356]

7.2. Using lists as stack and queue

Stacks are often known as LIFO (Last In First Out) structure. It means the data will enter into it at the

end , and the last data will come out first. The easiest example can be of couple of marbles in an one

side closed pipe. So if you want to take the marbles out of it you have to do that from the end where

you entered the last marble. To achieve the same in code
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>>> a

[1, 2, 3, 4, 5, 6]

>>> a.pop()

6

>>> a.pop()

5

>>> a.pop()

4

>>> a.pop()

3

>>> a

[1, 2]

>>> a.append(34)

>>> a

[1, 2, 34)

We learned a new method above pop(). pop(i) will take out the ith data from the list.

In our daily life we have to encounter queues many times, like in ticket counters or in library or in the

billing section of any supermarket. Queue is the data structure where you can append more data at

the end and take out data from the beginning. That is why it is known as FIFO (First In First Out).

>>> a = [1, 2, 3, 4, 5]

>>> a.append(1)

>>> a

[1, 2, 3, 4, 5, 1]

>>> a.pop(0)

1

>>> a.pop(0)

2

>>> a

[3, 4, 5, 1]

To take out the first element of the list we are using a.pop(0).

7.3. List Comprehensions

List comprehensions provide a concise way to create lists. Each list comprehension consists of

an expression followed by a for clause, then zero or more for or if clauses. The result will be a list

resulting from evaluating the expression in the context of the for and if clauses which follow it.

For example if we want to make a list out of the square values of another list, then
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>>> a = [1, 2, 3]

>>> [x ** 2 for x in a]

[1, 4, 9]

>>> z = [x + 1 for x in [x ** 2 for x in a]]

>>> z

[2, 5, 10]

Above in the second case we used two list comprehensions in a same line.

7.4. Tuples

Tuples are data separated by comma.

>>> a = 'Fedora', 'Debian', 'Kubuntu', 'Pardus'

>>> a

('Fedora', 'Debian', 'Kubuntu', 'Pardus')

>>> a[1]

'Debian'

>>> for x in a:

...     print x,

...

Fedora Debian Kubuntu Pardus

You can also unpack values of any tuple in to variables, like

>>> divmod(15,2)

(7, 1)

>>> x, y = divmod(15,2)

>>> x

7

>>> y

1

Tuples are immutable, that means you can not del/add/edit any value inside the tuple. Here is another

example

>>> a = (1, 2, 3, 4)

>>> del a[0]

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

TypeError: 'tuple' object doesn't support item deletion
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Above you can see python is giving error when we are trying to delete a value in the tuple.

To create a tuple which contains only one value you have to type a trailing comma.

>>> a = (123)

>>> a

123

>>> type(a)

<type 'int'>

>>> a = (123, ) #Look at the trailing comma

>>> a

(123,)

>>> type(a)

<type 'tuple'>

Using the buitin function type() you can know the data type of any variable. Remember the len()

function we used to find the length of any sequence ?

>>> type(len)

<type 'bulletin_function_or_method'>

7.5. Sets

Sets are another type of data structure with no duplicate items. We can also mathematical set

operations on sets.

>>> a = set('abcthabcjwethddda')

>>> a

set(['a', 'c', 'b', 'e', 'd', 'h', 'j', 't', 'w'])

And some examples of the set operations

>>> a = set('abracadabra')

>>> b = set('alacazam')

>>> a                                  # unique letters in a

set(['a', 'r', 'b', 'c', 'd'])

>>> a - b                              # letters in a but not in b

set(['r', 'd', 'b'])

>>> a | b                              # letters in either a or b

set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
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>>> a & b                              # letters in both a and b

set(['a', 'c'])

>>> a ^ b                              # letters in a or b but not both

set(['r', 'd', 'b', 'm', 'z', 'l'])

To add or pop values from a set

>>> a

set(['a', 'c', 'b', 'e', 'd', 'h', 'j', 'q', 't', 'w'])

>>> a.add('p')

>>> a

set(['a', 'c', 'b', 'e', 'd', 'h', 'j', 'q', 'p', 't', 'w'])

7.6. Dictionaries

Dictionaries are unordered set of key: value pairs where keys are unique. We declare dictionaries

using {} braces. We use dictionaries to store data for any particular key and then retrieve them.

>>> data = {'kushal':'Fedora', 'kart_':'Debian', 'Jace':'Mac'}

>>> data

{'kushal': 'Fedora', 'Jace': 'Mac', 'kart_': 'Debian'}

>>> data['kart_']

'Debian'

We can add more data to it by simply

>>> data['parthan'] = 'Ubuntu'

>>> data

{'kushal': 'Fedora', 'Jace': 'Mac', 'kart_': 'Debian', 'parthan': 'Ubuntu'}

To delete any particular key:value pair

>>> del data['kushal']

>>> data

{'Jace': 'Mac', 'kart_': 'Debian', 'parthan': 'Ubuntu'

To check if any key is there in the dictionary or not you can use has_key() or in keyword.
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>>> data.has_key('Soumya')

False

>>> 'Soumya' in data

False

You must remember that no mutable object can be a  key, that means you can not use a list as a key.

dict() can create dictionaries from tuples of key,value pair.

>>> dict((('Indian','Delhi'),('Bangladesh','Dhaka')))

{'Indian': 'Delhi', 'Bangladesh': 'Dhaka'}

If you want to loop through a dict use iteritems() method.

>>> data

{'Kushal': 'Fedora', 'Jace': 'Mac', 'kart_': 'Debian', 'parthan': 'Ubuntu'}

>>> for x, y in data.iteritems():

...     print "%s uses %s" % (x, y)

...

Kushal uses Fedora

Jace uses Mac

kart_ uses Debian

parthan uses Ubuntu

If you want to loop through a list (or any sequence) and get iteration number at the same time you

have to use enumerate().

>>> for i, j in enumerate(['a', 'b', 'c']):

...     print i, j

...

0 a

1 b

2 c

You may also need to iterate through two sequences same time, for that use zip() function.

>>> a = ['Pradeepto', 'Kushal']

>>> b = ['OpenSUSE', 'Fedora']

>>> for x, y in zip(a, b):
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...     print "%s uses %s" % (x, y)

...

Pradeepto uses OpenSUSE

Kushal uses Fedora

7.7. students.py

In this example , you have to take number of students as input , then ask marks for three subjects as

'Physics', 'Maths', 'History', if the total number for any student is less 120 then print he failed, or else

say passed.

#!/usr/bin/env python

n = int(raw_input("Enter the number of students:"))

data = {} # here we will store the data

languages = ('Physics', 'Maths', 'History') #all languages

for i in range(0, n): #for the n number of students

    name = raw_input('Enter the name of the student %d: ' % (i + 1)) #Get the

 name of the student

    marks = []

    for x in languages:

        marks.append(int(raw_input('Enter marks of %s: ' % x))) #Get the marks

 for  languages

    data[name] = marks

for x, y in data.iteritems():

    total =  sum(y)

    print "%s 's  total marks %d" % (x, total)

    if total < 120:

        print "%s failed :(" % x

    else:

        print "%s passed :)" % y

The output

[kd@kdlappy book]$ ./students.py

Enter the number of students:2

Enter the name of the student 1: Babai

Enter marks of Physics: 12

Enter marks of Maths: 45

Enter marks of History: 40

Enter the name of the student 2: Ria

Enter marks of Physics: 89

Enter marks of Maths: 98

Enter marks of History: 40

Babai 's  total marks 97
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Babai failed :(

Ria 's  total marks 227

Ria passed :)

7.8. matrixmul.py

In this example we will multiply two matrix's. First we will take input the number of rows/columns in the

matrix (here we assume we are using n x n matrix). Then values of the matrix's.

#!/usr/bin/env python

n = int(raw_input("Enter the value of n: "))

print "Enter values for the Matrix A"

a = []

for i in range(0, n):

    a.append([int(x) for x in raw_input("").split(" ")])

print "Enter values for the Matrix B"

b = []

for i in range(0, n):

    b.append([int(x) for x in raw_input("").split(" ")])

c = []

for i in range(0, n):

    c.append([a[i][j] * b[j][i] for j in range(0,n)])

print "After matrix multiplication"

print "-" * 10 * n

for x in c:

    for y in x:

        print "%5d" % y,

    print ""

print "-" * 10 * n

The output

[kd@kdlappy book]$ ./matrixmul.py

Enter the value of n: 3

Enter values for the Matrix A

1 2 3

4 5 6

7 8 9

Enter values for the Matrix B

9 8 7

6 5 4

3 2 1

After matrix multiplication

------------------------------
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    9    12     9

   32    25    12

   49    32     9

------------------------------

Here we have used list comprehensions couple of times. [int(x) for x in raw_input("").split(" ")] here first

it takes the input as string by raw_input(), then split the result by " ", then for each value create one int.

We are also using [a[i][j] * b[j][i] for j in range(0,n)] to get the resultant row in a single line.
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Strings
Strings are nothing but simple text. In python we declare strings in between "" or '' or ''' ''' or """ """. The

examples below will help you to understand sting in a better way.

>>> s = "I am Indian"

>>> s

'I am Indian'

>>> s = 'I am Indian'

>>> s = "Here is a line \

... splitted in two lines"

>>> s

'Here is a line splitted in two lines'

>>> s = "Here is a line \n splitted in two lines"

>>> s

'Here is a line \n splitted in two lines'

>>> print s

Here is a line

 splitted in two lines

Now if you want to multiline strings you have to use triple single/double quotes.

>>> s = """ This is a

... multiline string, so you can

... write many lines"""

>>> print s

 This is a

multiline string, so you can

write many lines

8.1. Different methods available for Strings

Every string object is having couple of buildin methods available, we already saw some of them like

s.split(" ").

>>> s = "kushal das"

>>> s.title()

'Kushal Das'

title() method returns a titlecased version of the string, words start with uppercase characters, all

remaining cased characters are lowercase.
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>>> z = s.upper()

>>> z

'KUSHAL DAS'

>>> z.lower()

'kushal das'

upper() returns a total uppercase version whereas lower() returns a lower case version of the string.

>>> s = "I am A pRoGraMMer"

>> s.swapcase()

'i AM a PrOgRAmmER'

swapcase() returns the string with case swapped :)

>>> s = "jdwb 2323bjb"

>>> s.isalnum()

False

>>> s = "jdwb2323bjb"

>>> s.isalnum()

True

Because of the space in the first line isalnum() returned False , it checks for all charecters are alpha

numeric or not.

>>> s = "SankarshanSir"

>>> s.isalpha()

True

>>> s = "Sankarshan Sir"

>>> s.isalpha()

False

isalpha() checkes for only alphabets.

>>> s = "1234"

>>> s.isdigit() #To check if all the characters are digits or not

True

>>> s = "Fedora9 is coming"

>>> s.islower() # To check if all chracters are lower case or not
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False

>>> s = "Fedora9 Is Coming" 

>>> s.istitle() # To check if it is a title or not

True

>>> s = "INDIA"

>>> s.isupper() # To check if characters are in upper case or not

True

To split any string we have split(). It takes a string as an argument , depending on that it will split the

main string and returns a list containing splitted strings.

>>> s = "We all love Python"

>>> s.split(" ")

['We', 'all', 'love', 'Python']

>>> x = "Nishant:is:waiting"

>>> x.split(':')

['Nishant', 'is', 'waiting']

The opposite method for split() is join(). It takes a list contains strings as input and join them.

>>> "-".join("GNU/Linux is great".split(" "))

'GNU/Linux-is-great'

In the above example first we are splitting the string "GNU/Linux is great" based on the white space,

then joining them with "-".

8.2. String the strings

Strings do have few methods to do striping. The simplest one is strip(chars). If you provide the chars

argument then it will strip any combination of them. By default it strips only whitespace or newline

characters.

>>> s = "  abc\n "

>>> s.strip()

'abc'

You can particularly strip from the left hand or right hand side also using lstrip(chars) or rstrip(chars).

>>> s = "www.foss.in"
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>>> s.lstrip("cwsd.")

'foss.in'

>>> s.rstrip("cnwdi.")

'www.foss'

8.3. Finding text

Stings have some methods which will help you in finding text/substring in a string. Examples are given

below:

>>> s.find("for")

7

>>> s.find("fora")

-1

>>> s.startswith("fa") #To check if the string startswith fa or not

True

>>> s.endswith("reason") #

True

find() helps to find the first occurrence of the substring given, if not found it returns -1.

8.4. Palindrome checking

Palindrome are the kind of strings which are same from left or right whichever way you read them.

Example "madam". In this example we will take the word as input from the user and say if it is

palindrome or not.

#!/usr/bin/env python

s = raw_input("Please enter a string: ")

z = [x for x in s]

z.reverse()

if s == "".join(z):

    print "The string is a palindrome"

else:

    print "The string is not a palindrome"

The output

[kd@kdlappy book]$ ./palindrome.py

Please enter a string: madam1

The string is not a palindrome



Number of words

47

[kd@kdlappy book]$ ./palindrome.py

Please enter a string: madam

The string is a palindrome

8.5. Number of words

In this example we will count the number of words in a given line

#!/usr/bin/env python

s = raw_input("Enter a line: ")

print "The number of words in the line are %d" % (len(s.split(" ")))

The output

[kd@kdlappy book]$ ./countwords.py

Enter a line: Sayamindu is a great programmer

The number of words in the line are 5



48



Chapter 9.

49

Functions
Reusing the same code is required many times within a same program. Functions help us to do so.

We write the things we have to do repeatedly in a function then call it where ever required. We already

saw build in functions like len(), divmod().

9.1. Defining a function

We use def keyword to define a function. general syntax is like

def functionname(params):

    statement1

    statement2

Let us write a function which will take two integers as input and then return the sum.

>>> def sum(a, b):

...     return a + b

In the second line with the return keyword, we are sending back the value of a + b to the caller. You

must call it like

>>> res = sum(234234, 34453546464)

>>> res

34453780698L

Remember the palindrome program we wrote in the last chapter. Let us write a function which will

check if a given string is palindrome or not, then return True or False.

#!/usr/bin/env python

def palindrome(s):

    z = s

    z = [x for x in z]

    z.reverse()

    if s == "".join(z):

        return True

    else:

        return False
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s = raw_input("Enter a string: ")

if palindrome(s):

    print "Yay a palindrome"

else:

    print "Oh no, not a palindrome"

Now run the code :)

9.2. Local and global variables

To understand local and global variables we will go through two examples.

#!/usr/bin/env python

def change(b):

    a = 90

    print a

a = 9

print "Before the function call ", a

print "inside change function",

change(a)

print "After the function call ", a

The output

[kd@kdlappy book]$ ./local.py

Before the function call  9

inside change function 90

After the function call  9

First we are assigning 9 to a, then calling change function, inside of that we are assigning 90 to a

and printing a. After the function call we are again printing the value of a. When we are writing a =

90 inside the function, it is actually creating a new variable called a, which is only available inside the

function and will be destroyed after the function finished. So though the name is same for the variable

a but they are different in and out side of the function.

#!/usr/bin/env python

def chvariable ange(b):

    global a

    a = 90

    print a

a = 9

print "Before the function call ", a
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print "inside change function",

change(a)

print "After the function call ", a

Here by using global keyword we are telling that a is globally defined, so when we are changing a's

value inside the function it is actually changing for the a outside of the function also.

9.3. Default argument value

In a function variables may have default argument values, that means if we don't give any value for

that particular variable it will assigned automatically.

>>> def test(a , b = -99):

...     if a > b:

...         return True

...     else:

...         return False

In the above example we have written b = -99 in the function parameter list. That means of no value

for b is given then b's value is -99. This is a very simple example of default arguments. You can test

the code by

>>> test(12, 23)

False

>>> test(12)

True

Important

Remember that you can not have an argument without default argument if you already

have one argument with default values before it. Like f(a, b=90, c) is illegal as b is

having a default value but after that c is not having any default value.

Also remember that default value is evaluated only once, so if you have any mutable object like list it

will make a difference. See the next example

>>> def f(a, data=[]):

...     data.append(a)

...     return data

...
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>>> print f(1)

[1]

>>> print f(2)

[1, 2]

>>> print f(3)

[1, 2, 3]

9.4. Keyword arguments

>>> def func(a, b=5, c=10):

...     print 'a is', a, 'and b is', b, 'and c is', c

...

>>> func(12, 24)

a is 12 and b is 24 and c is 10

>>> func(12, c = 24)

a is 12 and b is 5 and c is 24

>>> func(b=12, c = 24, a = -1)

a is -1 and b is 12 and c is 24

In the above example you can see we are calling the function with variable names, like func(12, c =

24), by that we are assigning 24 to c and b is getting its default value. Also remember that you can not

have without keyword based argument after a keyword based argument. like

>>> def func(a, b=13, v):

...     print a, b, v

...

  File "<stdin>", line 1

SyntaxError: non-default argument follows default argument
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File handling
A file is some information or data which stays in the computer storage devices. You already know

about different kinds of file , like your music files, video files, text files. Python gives you easy ways to

manipulate these files. Generally we divide files in two categories, text file and binary file. Text files are

simple text where as the binary files contain binary data which is only readable by computer.

10.1. File opening

To open a file we use open() function. It requires two arguments, first the file path or file name, second

which mode it should open. Modes are like

"r" -> open read only, you can read the file but can not edit / delete anything inside

"w" -> open with write power, means if the file exists then delete all content and open it to write

"a" -> open in append mode

The default mode is read only, ie if you do not provide any mode it will open the file as read only. Let

us open a file

>>> f = open("love.txt")

>>> f

<open file 'love.txt', mode 'r' at 0xb7f2d968>

10.2. Reading a file

To read the whole file at once use the read() method.

>>> f = open("sample.txt")

>>> f.read()

'I love Python\nPradeepto loves KDE\nSankarshan loves Openoffice\n'

If you call read() again it will return empty string as it already read the whole file. readline() can help

you to read one line each time from the file.

>>> f = open("sample.txt")

>>> f.readline()

'I love Python\n'

>>> f.readline()

'Pradeepto loves KDE\n'
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To read all the all the lines in a list we use readlines() method.

>>> f = open("sample.txt")

>>> f.readlines()

['I love Python\n', 'Pradeepto loves KDE\n', 'Sankarshan loves Openoffice\n']

You can even loop through the lines in a file object.

>>> f = open("sample.txt")

>>> for x in f:

...     print x,

...

I love Python

Pradeepto loves KDE

Sankarshan loves Openoffice

Let us write a program which will take the file name as the input from the user and show the content of

the file in the console.

#!/usr/bin/env python

name = raw_input("Enter the file name: ")

f = open(name)

print f.read()

f.close()

In the last line you can see that we closed the file object with the help of close() method.

The output

[kd@kdlappy book]$ ./showfile.py

Enter the filename: sample.txt

I love Python

Pradeepto loves KDE

Sankarshan loves Openoffice

10.3. Writing in a file

Let us open a file then we will write some random text into it by using the write() method.
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>>> f = open("list.txt", 'w')

>>> f.write('powerpork\n')

>>> f.write('indrag\n')

>>> f.write('mishti\n')

>>> f.write('sm|CPU')

>>> f.close()

Now read the file we just created

>>> f = open('ircnicks.txt')

>>> s = f.read()

>>> print s

powerpork

indrag

mishti

sm|CPU

10.4. copyfile.py

In this example we will copy a given file to another file.

#!/usr/bin/env python

import sys

if len(sys.argv) < 3:

    print "Wrong parameter"

    print "./copyfile.py file1 file2"

    sys.exit(1)

f1 = open(sys.argv[1])

s = f1.read()

f1.close()

f2 = open(sys.argv[2], 'w')

f2.write(s)

f2.close()

You can see we used a new module here sys. sys.argv contains all command line parameters.

Remember cp command in shell, after cp we type first the file to be copied and then the new file name.

The first value in sys.argv is the name of the command itself.

#!/usr/bin/env python

import sys
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print "First value", sys.argv[0]

print "All values"

for i, x  in enumerate(sys.argv):

    print i, x

The output

[kd@kdlappy book]$ ./argvtest.py Hi there

First value ./argvtest.py

All values

0 ./argvtest.py

1 Hi

2 there

Here we used a new function enumerate(iterableobject), which returns the index number and the value

from the iterable object.

10.5. Random seeking in a file

You can also randomly move around inside a file using seek() method. It takes two arguments , offset

and whence. To know more about it let us read what python help tells us

seek(...) seek(offset[, whence]) -> None. Move to new file position. Argument offset is a byte count.

Optional argument whence defaults to 0 (offset from start of file, offset should be >= 0); other values

are 1 (move relative to current position, positive or negative), and 2 (move relative to end of file,

usually negative, although many platforms allow seeking beyond the end of a file). If the file is opened

in text mode, only offsets returned by tell() are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are speakable.

Let us see one example

>>> f = open('tempfile', 'w')

>>> f.write('0123456789abcdef')

>>> f.close()

>>> f = open('tempfile')

>>> f.tell()    #tell us the offset position

0L

>>> f.seek(5) # Goto 5th byte

>>> f.tell()

5L

>>> f.read(1) #Read 1 byte

'5'

>>> f.seek(-3, 2) # goto 3rd byte from the end

>>> f.read() #Read till the end of the file
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'def'
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